14,289 research outputs found

    Urn Models and Beta-splines

    Get PDF
    Some insight into the properties of beta-splines is gained by applying the techniques of urn models. Urn models are used to construct beta-spline basis functions and to derive the basic properties of these blending functions and the corresponding beta-spline curves. Only the simple notion of linear geometric continuity and with the most elementary beta parameter are outlined. Non-linear geometric continuity leads to additional beta parameters and to more complicated basis functions. Whether urn models can give us any insight into these higher order concepts still remains to be investigated

    Periodically-driven quantum systems: Effective Hamiltonians and engineered gauge fields

    Full text link
    Driving a quantum system periodically in time can profoundly alter its long-time dynamics and trigger topological order. Such schemes are particularly promising for generating non-trivial energy bands and gauge structures in quantum-matter systems. Here, we develop a general formalism that captures the essential features ruling the dynamics: the effective Hamiltonian, but also the effects related to the initial phase of the modulation and the micro-motion. This framework allows for the identification of driving schemes, based on general N-step modulations, which lead to configurations relevant for quantum simulation. In particular, we explore methods to generate synthetic spin-orbit couplings and magnetic fields in cold-atom setups.Comment: 25 pages, 6 figures, includes Appendices (A-K). An erroneous factor of two has been corrected in the last term of Eq. C10 (Appendix C); this typo had no impact on the rest of the articl

    Parametric Instabilities in Resonantly-Driven Bose-Einstein Condensates

    Full text link
    Shaking optical lattices in a resonant manner offers an efficient and versatile method to devise artificial gauge fields and topological band structures for ultracold atomic gases. This was recently demonstrated through the experimental realization of the Harper-Hofstadter model, which combined optical superlattices and resonant time-modulations. Adding inter-particle interactions to these engineered band systems is expected to lead to strongly-correlated states with topological features, such as fractional Chern insulators. However, the interplay between interactions and external time-periodic drives typically triggers violent instabilities and uncontrollable heating, hence potentially ruling out the possibility of accessing such intriguing states of matter in experiments. In this work, we study the early-stage parametric instabilities that occur in systems of resonantly-driven Bose-Einstein condensates in optical lattices. We apply and extend an approach based on Bogoliubov theory [PRX 7, 021015 (2017)] to a variety of resonantly-driven band models, from a simple shaken Wannier-Stark ladder to the more intriguing driven-induced Harper-Hofstadter model. In particular, we provide ab initio numerical and analytical predictions for the stability properties of these topical models. This work sheds light on general features that could guide current experiments to stable regimes of operation.Comment: 15 pages, 6 figures, one appendi

    Quantum Hall-like effect for cold atoms in non-Abelian gauge potentials

    Full text link
    We study the transport of cold fermionic atoms trapped in optical lattices in the presence of artificial Abelian or non-Abelian gauge potentials. Such external potentials can be created in optical lattices in which atom tunneling is laser assisted and described by commutative or non-commutative tunneling operators. We show that the Hall-like transverse conductivity of such systems is quantized by relating the transverse conductivity to topological invariants known as Chern numbers. We show that this quantization is robust in non-Abelian potentials. The different integer values of this conductivity are explicitly computed for a specific non-Abelian system which leads to a fractal phase diagram.Comment: 6 pages, 2 figure

    Fractional Chern insulators of few bosons in a box: Hall plateaus from center-of-mass drifts and density profiles

    Full text link
    Realizing strongly-correlated topological phases of ultracold gases is a central goal for ongoing experiments. And while fractional quantum Hall states could soon be implemented in small atomic ensembles, detecting their signatures in few-particle settings remains a fundamental challenge. In this work, we numerically analyze the center-of-mass Hall drift of a small ensemble of hardcore bosons, initially prepared in the ground state of the Harper-Hofstadter-Hubbard model in a box potential. By monitoring the Hall drift upon release, for a wide range of magnetic flux values, we identify an emergent Hall plateau compatible with a fractional Chern insulator state: the extracted Hall conductivity approaches a fractional value determined by the many-body Chern number, while the width of the plateau agrees with the spectral and topological properties of the prepared ground state. Besides, a direct application of Streda's formula indicates that such Hall plateaus can also be directly obtained from static density-profile measurements. Our calculations suggest that fractional Chern insulators can be detected in cold-atom experiments, using available detection methods.Comment: 13 pages, 11 figures; extended version accepted for publicatio

    Buneman instability in a magnetized current-carrying plasma with velocity shear

    Full text link
    Buneman instability is often driven in magnetic reconnection. Understanding how velocity shear in the beams driving the Buneman instability affects the growth and saturation of waves is relevant to turbulence, heating, and diffusion in magnetic reconnection. Using a Mathieu-equation analysis for weak cosine velocity shear together with Vlasov simulations, the effects of shear on the kinetic Buneman instability are studied in a plasma consisting of strongly magnetized electrons and cold unmagnetized ions. In the linearly unstable phase, shear enhances the coupling between oblique waves and the sheared electron beam, resulting in a wider range of unstable eigenmodes with common lower growth rates. The wave couplings generate new features of the electric fields in space, which can persist into the nonlinear phase when electron holes form. Lower hybrid instabilities simultaneously occur at k/kme/mik_{\shortparallel}/k_{\perp} \sim \sqrt{m_e/m_i} with a much lower growth rate, and are not affected by the velocity shear.Comment: Accepted by Physics of Plasm

    Periodically-driven quantum matter: the case of resonant modulations

    Full text link
    Quantum systems can show qualitatively new forms of behavior when they are driven by fast time-periodic modulations. In the limit of large driving frequency, the long-time dynamics of such systems can often be described by a time-independent effective Hamiltonian, which is generally identified through a perturbative treatment. Here, we present a general formalism that describes time-modulated physical systems, in which the driving frequency is large, but resonant with respect to energy spacings inherent to the system at rest. Such a situation is currently exploited in optical-lattice setups, where superlattice (or Wannier-Stark-ladder) potentials are resonantly modulated so as to control the tunneling matrix elements between lattice sites, offering a powerful method to generate artificial fluxes for cold-atom systems. The formalism developed in this work identifies the basic ingredients needed to generate interesting flux patterns and band structures using resonant modulations. Additionally, our approach allows for a simple description of the micro-motion underlying the dynamics; we illustrate its characteristics based on diverse dynamic-lattice configurations. It is shown that the impact of the micro-motion on physical observables strongly depends on the implemented scheme, suggesting that a theoretical description in terms of the effective Hamiltonian alone is generally not sufficient to capture the full time-evolution of the system.Comment: 16 pages, 3 figures; includes a new Section III dedicated to the strong-driving regim
    corecore